Singular limits for a parabolic-elliptic regularization of scalar conservation laws

نویسندگان

  • Andrea Corli
  • Christian Rohde
چکیده

We consider scalar hyperbolic conservation laws with a nonconvex flux, in one space dimension. Then, weak solutions of the associated initial-value problems can contain undercompressive shock waves. We regularize the hyperbolic equation by a parabolic-elliptic system that produces undercompressive waves in the hyperbolic limit regime. Moreover we show that in another limit regime, called capillarity limit, we recover solutions of a diffusive-dispersive regularization, which is the standard regularization used to approximate undercompressive waves. In fact the new parabolic-elliptic system can be understood as a low-order approximation of the third-order diffusive-dispersive regularization, thus sharing some similarities with the relaxation approximations. A study of the traveling waves for the parabolic-elliptic system completes the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal Conservation Laws: Global Smooth Solutions and Vanishing Regularization

We consider the parabolic regularization of a scalar conservation law in which the Laplacian operator has been replaced by a fractional power of itself. Using a splitting method, we prove the existence of a solution to the problem and, thanks to the Banach fixed point theorem, its uniqueness and regularity. We also show that, as the regularization vanishes, the solution converge to the entropy ...

متن کامل

A Subcell Resolution Method for Viscous Systems of Conservation Laws

We consider the generalization of scalar subcell resolution schemes to systems of viscous conservation laws. For this purpose we use a weakly nonlinear geometrical optics approximation for parabolic perturbations of hyperbolic conservation laws and the Roe-type field by field decomposition. Computations of the reactive Navier-Stokes equations are presented as an application.

متن کامل

Long-time Behavior, Invariant Measures and Regularizing Effects for Stochastic Scalar Conservation Laws

We study the long-time behavior and regularity of the pathwise entropy solutions to stochastic scalar conservation laws with random in time spatially homogeneous fluxes and periodic initial data. We prove that the solutions converge to their spatial average, which is the unique invariant measure of the associated random dynamical system, and provide a rate of convergence, the latter being new e...

متن کامل

Fundamental solutions and singular shocks in scalar conservation laws

We study the existence and non-existence of fundamental solutions for the scalar conservation laws ut + f(u)x = 0, related to convexity assumptions on f . We also study the limits of those solutions as the initial mass goes to infinity. We especially prove the existence of so-called Friendly Giants and Infinite Shock Solutions according to the convexity of f , which generalize the explicit powe...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011